Anaerobic digestion makes use of nutrients in manure and food waste, turning what could have ended up in a landfill into biogas that can provide electricity, natural gas, or even power for homes in nearby towns.
Enteric methane is potent, short-lived, and a major target for reductions to improve the sustainability of livestock production.
Methane is a product of enteric fermentation in a ruminant animal's gut. Read on to find out why it's important, and ways we can reduce enteric methane to improve livestock production.
Lawns are everywhere--I bet you have one! Turfgrass, like all other plants, requires nutrients. And nitrogen fertilizers, lawn mowing, and other maintenance tasks can give off powerful greenhouse gases. Read on to learn how to cut greenhouse gas emissions from turfgrass systems.
From driving a car to buying groceries, many parts of our daily lives make up our carbon footprint. And the scope gets even bigger when you consider the carbon footprint of a whole organization.
Nitrous oxide is a greenhouse gas with 300 times the global warming potential of carbon dioxide. How do we measure it in the field, and what can we do to cut emissions?
Owned, direct, indirect, energy, supply chains--what in the world counts as an emission for each scope?
Agriculture is often cited as a primary source of greenhouse gas (GHG) emissions, but crop production and land use account for just over 13% of food-related GHG emissions globally. Altogether, food production in every stage accounts for 26% of global GHG emissions.
Compared to other sectors globally, food production (including retail, transport, processing, farming, and land use) accounts for 26% of all greenhouse gas emissions as of 2019.
Soil management is responsible for over half the greenhouse gas emissions generated by agriculture in the United States. Enteric fermentation—or gases created by livestock digesting their food—account for another 27%, and manure management another 14%.