Bite-sized, unbiased, scientific
Changing management practices can help sequester carbon in the soil and improve overall soil health. But how deep does that organic carbon go?
The "gold standard" of soil sampling is getting physical samples from multiple spots throughout the field. But all that could be changing--watch Steven Hall explain why.
Total soil carbon includes both organic and inorganic carbon. Soil organic carbon includes the once-living matter from plants, dead leaves, roots, and soil microbes, while inorganic carbon is mineral-based and much less responsive to management.
Measuring, reporting, and verifying soil carbon requires accurate collection of soil data, reporting in standardized units, and third-party checks.
After adding additional plant matter to the soil, the biggest driver of storing soil organic carbon is the activity of microorganisms like bacteria and fungi, followed by soil texture.
Cover crops provide an additional source of biomass to the soil. More biomass means more opportunities to sequester carbon!
Interested in finding out how much carbon is in your soil? One of the first things to tackle is taking manual soil cores.
Collect samples to measure organic carbon concentration, bulk density, and coarse fragments. Together, these three measures can help you accurately calculate soil carbon stock in your fields.
Calculating soil organic carbon stock requires measures of soil organic carbon concentration of the soil, bulk density, and coarse fragment content.
Chris Boomsma, the Director of Science & Strategy for Decode 6, sat down to tell us: What is Decode 6?
Implementing cover crops and moving to no-till can make the greatest impact at the lowest cost, although the amount of carbon sequestered or emissions reduced and cost of each practice varies by region.
A “carbon pool” is any part of the climate system with the capacity to store, accumulate, or release carbon, according to the European Union. The soil carbon pool includes all the carbon in the soil, but the size of the soil carbon pool can be changed depending on management.
Growing crops is all about making good use of solar energy. Though many farms only make use of the sun’s energy from about May through September, Wayne Fredericks maximizes his solar energy harvest with cover crops, improving his soil health in the process.
If you care about something, you measure it. Just as doctors recommend annual checkups, soil scientists recommend measuring soil health. But it's one thing to take samples in a single field--how do you measure soil health at scale?
Carbon markets rely on accurate measurement, reporting, and verification (MRV) of soil carbon to issue carbon credits. But tallying soil carbon can be tricky. How should we go about sampling soil for MRV? And what does it tell us?
Agriculture is often cited as a primary source of greenhouse gas (GHG) emissions, but crop production and land use account for just over 13% of food-related GHG emissions globally. Altogether, food production in every stage accounts for 26% of global GHG emissions.
Healthy soils are teeming with life. Changing management practices to foster biological activity is the key to improving soil health.
139 million acres of farmland in the US are still eligible to change crop production practices to reduce tillage, according to United States Department of Agriculture data from 2016.
Agricultural soils hold great potential for sequestering carbon and improving soil health in the process. But how do you measure soil carbon?
The soil’s potential carbon capacity depends on soil type, climate, and management practices. No two soils will sequester carbon at the same rate or in exactly the same amount—different producers need to implement different practices depending on their land.
Increased soil water storage, improved biological activity, better soil aggregation, improved yield--these are just a few of the benefits of increasing agricultural soil carbon.
Carbon cycles through agricultural systems through plant photosynthesis, biomass decomposition, and animal production, with opportunities to improve carbon sequestration at each point in the cycle.
Management practices either improve or set back soil carbon sequestration, beginning with the soil and moving through crop production.
Carbon and ecosystem markets are proliferating, but growers are reluctant to participate. Why? There is a lack of unbiased, science-based information, and no extensive, centralized education resource to which growers and their trusted advisers can turn. Decode 6 is here to help.
Sinking carbon into soil is a powerful tool in our toolbox to decrease or offset carbon emissions. But how does carbon get into the soil? And once it's there, how do we keep it there?
All aspects of crop production that involve keeping the soil covered, minimizing disturbance, and agronomic management can help sequester carbon and reduce emissions.
Compared to other sectors globally, food production (including retail, transport, processing, farming, and land use) accounts for 26% of all greenhouse gas emissions as of 2019.
Soil management is responsible for over half the greenhouse gas emissions generated by agriculture in the United States. Enteric fermentation—or gases created by livestock digesting their food—account for another 27%, and manure management another 14%.